3.917 \(\int \frac {1}{(2+e x)^{5/2} \sqrt {12-3 e^2 x^2}} \, dx\)

Optimal. Leaf size=86 \[ -\frac {\sqrt {3} \sqrt {2-e x}}{64 e (e x+2)}-\frac {\sqrt {2-e x}}{8 \sqrt {3} e (e x+2)^2}-\frac {\sqrt {3} \tanh ^{-1}\left (\frac {1}{2} \sqrt {2-e x}\right )}{128 e} \]

[Out]

-1/128*arctanh(1/2*(-e*x+2)^(1/2))*3^(1/2)/e-1/24*3^(1/2)*(-e*x+2)^(1/2)/e/(e*x+2)^2-1/64*3^(1/2)*(-e*x+2)^(1/
2)/e/(e*x+2)

________________________________________________________________________________________

Rubi [A]  time = 0.03, antiderivative size = 86, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 4, integrand size = 24, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.167, Rules used = {627, 51, 63, 206} \[ -\frac {\sqrt {3} \sqrt {2-e x}}{64 e (e x+2)}-\frac {\sqrt {2-e x}}{8 \sqrt {3} e (e x+2)^2}-\frac {\sqrt {3} \tanh ^{-1}\left (\frac {1}{2} \sqrt {2-e x}\right )}{128 e} \]

Antiderivative was successfully verified.

[In]

Int[1/((2 + e*x)^(5/2)*Sqrt[12 - 3*e^2*x^2]),x]

[Out]

-Sqrt[2 - e*x]/(8*Sqrt[3]*e*(2 + e*x)^2) - (Sqrt[3]*Sqrt[2 - e*x])/(64*e*(2 + e*x)) - (Sqrt[3]*ArcTanh[Sqrt[2
- e*x]/2])/(128*e)

Rule 51

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^(n + 1
))/((b*c - a*d)*(m + 1)), x] - Dist[(d*(m + n + 2))/((b*c - a*d)*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^n,
x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && LtQ[m, -1] &&  !(LtQ[n, -1] && (EqQ[a, 0] || (NeQ[
c, 0] && LtQ[m - n, 0] && IntegerQ[n]))) && IntLinearQ[a, b, c, d, m, n, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 627

Int[((d_) + (e_.)*(x_))^(m_.)*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Int[(d + e*x)^(m + p)*(a/d + (c*x)/e)^
p, x] /; FreeQ[{a, c, d, e, m, p}, x] && EqQ[c*d^2 + a*e^2, 0] && (IntegerQ[p] || (GtQ[a, 0] && GtQ[d, 0] && I
ntegerQ[m + p]))

Rubi steps

\begin {align*} \int \frac {1}{(2+e x)^{5/2} \sqrt {12-3 e^2 x^2}} \, dx &=\int \frac {1}{\sqrt {6-3 e x} (2+e x)^3} \, dx\\ &=-\frac {\sqrt {2-e x}}{8 \sqrt {3} e (2+e x)^2}+\frac {3}{16} \int \frac {1}{\sqrt {6-3 e x} (2+e x)^2} \, dx\\ &=-\frac {\sqrt {2-e x}}{8 \sqrt {3} e (2+e x)^2}-\frac {\sqrt {3} \sqrt {2-e x}}{64 e (2+e x)}+\frac {3}{128} \int \frac {1}{\sqrt {6-3 e x} (2+e x)} \, dx\\ &=-\frac {\sqrt {2-e x}}{8 \sqrt {3} e (2+e x)^2}-\frac {\sqrt {3} \sqrt {2-e x}}{64 e (2+e x)}-\frac {\operatorname {Subst}\left (\int \frac {1}{4-\frac {x^2}{3}} \, dx,x,\sqrt {6-3 e x}\right )}{64 e}\\ &=-\frac {\sqrt {2-e x}}{8 \sqrt {3} e (2+e x)^2}-\frac {\sqrt {3} \sqrt {2-e x}}{64 e (2+e x)}-\frac {\sqrt {3} \tanh ^{-1}\left (\frac {1}{2} \sqrt {2-e x}\right )}{128 e}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.06, size = 53, normalized size = 0.62 \[ \frac {(e x-2) \sqrt {e x+2} \, _2F_1\left (\frac {1}{2},3;\frac {3}{2};\frac {1}{2}-\frac {e x}{4}\right )}{32 e \sqrt {12-3 e^2 x^2}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/((2 + e*x)^(5/2)*Sqrt[12 - 3*e^2*x^2]),x]

[Out]

((-2 + e*x)*Sqrt[2 + e*x]*Hypergeometric2F1[1/2, 3, 3/2, 1/2 - (e*x)/4])/(32*e*Sqrt[12 - 3*e^2*x^2])

________________________________________________________________________________________

fricas [B]  time = 1.04, size = 139, normalized size = 1.62 \[ \frac {3 \, \sqrt {3} {\left (e^{3} x^{3} + 6 \, e^{2} x^{2} + 12 \, e x + 8\right )} \log \left (-\frac {3 \, e^{2} x^{2} - 12 \, e x + 4 \, \sqrt {3} \sqrt {-3 \, e^{2} x^{2} + 12} \sqrt {e x + 2} - 36}{e^{2} x^{2} + 4 \, e x + 4}\right ) - 4 \, \sqrt {-3 \, e^{2} x^{2} + 12} {\left (3 \, e x + 14\right )} \sqrt {e x + 2}}{768 \, {\left (e^{4} x^{3} + 6 \, e^{3} x^{2} + 12 \, e^{2} x + 8 \, e\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+2)^(5/2)/(-3*e^2*x^2+12)^(1/2),x, algorithm="fricas")

[Out]

1/768*(3*sqrt(3)*(e^3*x^3 + 6*e^2*x^2 + 12*e*x + 8)*log(-(3*e^2*x^2 - 12*e*x + 4*sqrt(3)*sqrt(-3*e^2*x^2 + 12)
*sqrt(e*x + 2) - 36)/(e^2*x^2 + 4*e*x + 4)) - 4*sqrt(-3*e^2*x^2 + 12)*(3*e*x + 14)*sqrt(e*x + 2))/(e^4*x^3 + 6
*e^3*x^2 + 12*e^2*x + 8*e)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \mathit {sage}_{0} x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+2)^(5/2)/(-3*e^2*x^2+12)^(1/2),x, algorithm="giac")

[Out]

sage0*x

________________________________________________________________________________________

maple [A]  time = 0.06, size = 126, normalized size = 1.47 \[ -\frac {\sqrt {-e^{2} x^{2}+4}\, \left (3 \sqrt {3}\, e^{2} x^{2} \arctanh \left (\frac {\sqrt {3}\, \sqrt {-3 e x +6}}{6}\right )+12 \sqrt {3}\, e x \arctanh \left (\frac {\sqrt {3}\, \sqrt {-3 e x +6}}{6}\right )+6 \sqrt {-3 e x +6}\, e x +12 \sqrt {3}\, \arctanh \left (\frac {\sqrt {3}\, \sqrt {-3 e x +6}}{6}\right )+28 \sqrt {-3 e x +6}\right ) \sqrt {3}}{384 \sqrt {\left (e x +2\right )^{5}}\, \sqrt {-3 e x +6}\, e} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(e*x+2)^(5/2)/(-3*e^2*x^2+12)^(1/2),x)

[Out]

-1/384*(-e^2*x^2+4)^(1/2)*(3*3^(1/2)*arctanh(1/6*3^(1/2)*(-3*e*x+6)^(1/2))*x^2*e^2+12*arctanh(1/6*3^(1/2)*(-3*
e*x+6)^(1/2))*3^(1/2)*x*e+6*(-3*e*x+6)^(1/2)*e*x+12*3^(1/2)*arctanh(1/6*3^(1/2)*(-3*e*x+6)^(1/2))+28*(-3*e*x+6
)^(1/2))/((e*x+2)^5)^(1/2)*3^(1/2)/(-3*e*x+6)^(1/2)/e

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{\sqrt {-3 \, e^{2} x^{2} + 12} {\left (e x + 2\right )}^{\frac {5}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+2)^(5/2)/(-3*e^2*x^2+12)^(1/2),x, algorithm="maxima")

[Out]

integrate(1/(sqrt(-3*e^2*x^2 + 12)*(e*x + 2)^(5/2)), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {1}{\sqrt {12-3\,e^2\,x^2}\,{\left (e\,x+2\right )}^{5/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/((12 - 3*e^2*x^2)^(1/2)*(e*x + 2)^(5/2)),x)

[Out]

int(1/((12 - 3*e^2*x^2)^(1/2)*(e*x + 2)^(5/2)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \frac {\sqrt {3} \int \frac {1}{e^{2} x^{2} \sqrt {e x + 2} \sqrt {- e^{2} x^{2} + 4} + 4 e x \sqrt {e x + 2} \sqrt {- e^{2} x^{2} + 4} + 4 \sqrt {e x + 2} \sqrt {- e^{2} x^{2} + 4}}\, dx}{3} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+2)**(5/2)/(-3*e**2*x**2+12)**(1/2),x)

[Out]

sqrt(3)*Integral(1/(e**2*x**2*sqrt(e*x + 2)*sqrt(-e**2*x**2 + 4) + 4*e*x*sqrt(e*x + 2)*sqrt(-e**2*x**2 + 4) +
4*sqrt(e*x + 2)*sqrt(-e**2*x**2 + 4)), x)/3

________________________________________________________________________________________